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stishovite) which has a mean density at zero pressure 
Po of 4.08 g/cm 3

. This value of Po compares very well 
with 4.10 (±O.OS) g/cm 3

, the density value obtained 
by extrapolation of trajectory (4) to the zero·pressure 
point by the use of the Birch equation of state. Thus, 
the usefulness of the proposed scheme for identifica· 
tion of phases and their densities at high pressures is 
readily observed. 

In summary, then, the author concludes the fol· 
lowing:. a) the analytical scheme proposed in this 
paper involving eqs. (3) and (S) is useful for construc· 
ting equations of state of solid phases that cannot be 
determined experimentally given the present state of 
technology , and b) one now should be able to model 
in the laboratory the elasticity and constitution of 
the earth's interior by incorporating the information 
on experimental petrology , high·pressure compression 
data and geophysical field observations in this approxi· 
mation scheme. In a subsequent series of communica· 
tions, the results of such an attempt shall be reported. 

The author is grateful to Francis Birch who gave 
encouragement to look further into the equations 
of state of high·pressure solid phases. The idea pre· 
sented here is simple, but it works as illustrated, and 
it is the only one of its kind proposed in the geophys· 
icalliterature. This study was supported by the 
National Science Foundation. 

* The Hugoniot curve is found from the pressure·volume· 
energy (PVE) surface specified by the input through the 
constrain t eq ua tion 

E2 -El =! (PI +P2) (VI - V2 ) 

which is the energy-jump condition for a shock transition 
from State 1 to State 2. In the case of a phase transition, 
the Gibbs free energy is found by integrating the equation 
of state of each phase and the additional constraint that 
"the Gibbs free energy must be equal" is imposed in the 
mixed·phase region. The slope of the equilibrium Hugoniot 
curve in the mixed-phase region depends on the entropy 
difference and volume difference between phases. For any 
reasonable value of these parameters, the slope of the equi­
librium Hugoniot curve in the mixed·phase region is much 
smaller than the slope of the actual shock-wave data points. 
Therefore, the transition does not go to completion in the 
shock experiments and in this intermediate region consisting 
of mixed phases no conclusion on density of the high-pres­
sure phase can be drawn. 
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